Chapter 13: Operator Overloading 451

complex operator - (complex c2);
complex operator * (complex c2);
complex operator / (complex c2);
Y
// addition of complex numbers, c3 = cl + c2
complex complex::operator + { complex c2)
{
complex temp;
temp.real = real + c2.real;
temp.imag = imag + c2.imag;
return(temp);
}
// subtraction of complex numbers, c3 =cl - ¢c2;
complex complex::operator - (complex c2)
{
complex temp;
temp.real = real - c2.real;
temp.imag = imag - c2.imag;
return(temp);
}
// Multiplication of complex numbers, ¢3 =
complex complex::operator * (complex c2)
{
complex temp;
temp.real = real * c2.real - imag * c2.imag;
temp.imag = real * c2.imag + imag * c2.real;
return{ temp);
}
// Division of complex numbers, c3 =c¢cl / c2
complex complex::operator / (complex c2)
{
complex temp;
float Qt:
qt = c2.real*c2.real+c2.imag*c2.imag;
temp.real = (real * c2.real + imag * c2.imag)/qt;
temp.imag = (imag * c2.real- real * c2.imag) /qt;
return(temp);

cl * c2

}

void main{()

{ .
complex cl, c2, c3;
// read complex numbers cl and c2
cout << "Enter Complex Number cl .." << endl;
cl.getdata();
cout << "Enter Complex Number c2 .." << endl;
c2.getdatal();
cout << "Entered Complex Numbers are...";
cl.outdata("cl = " };
c2.outdata("c2 = ");
cout << endl << *Computational results are...";
c3 = cl + ¢c2;

452 Mastering C++

c3.outdata("c3 = cl + ¢c2: *);

c3 =cl - ¢c2;

c3.outdata("c3 = cl - c2: ");

c3 =cl * ¢2;

c3.outdata("c3 = cl * ¢c2: ");

c3 =cl / c2;

c3.outdata("c3 = ¢l / c2: ");

c3 =cl +¢c2 +cl.+ c2;

c3.outdata("c3 =cl + c2 + cl + c2: *);

c3 =cl *c2 +cl / c2;

c3.outdata("¢c3 = ¢l * c2 + ¢l / c2: *);
}

Bun

Enter Complex Number cl ..
Real Part ? 2.5

Imag Part ? 2.0

Enter Complex Number c2 ..
Real Part ? 3.0

Imag Part ? 1.5

Entered Complex Numbers are...
cl ='(2.5, 2)

z2 = (3, 1.5)

Computational results are...
c3 =cl +c2: (5.5, 3.5)

c3 =c¢cl - c2: (-0.5, 0.5)

c3 =cl *c2: (4.5, 9.75)

c3 =cl / c2: (0.933333, 0.2)

c3 =cl +c2 +cl +c2: (11, 7)

c3 =cl *c2 +cl / ¢c2: (5.43333, 9.95)

In main (), the statement,
c3 =cl +c2 +cl + c2;
is evaluated as
((cl.operator+(c2)) .operator+{cl)) .operator+{(c2);
from left to right, since all the operators have the same precedence. However, the statement
c3 =cl *c2 +cl / c3;
is evaluated as
(cl.operator*(c2)) .operator+(cl.operator/ (c2))
Operators with higher precedence are evaluated first, followed by those with lower precedence.

13.10 Concatenation of Strings

Normally, concatenation of strings is performed by using the library functionstrcat () explicitly. To
illustrate this concept, consider the strings strl and str2 which are defined as follows:

char strl1[50] = *Welcome to *;
char str2[25] = *Operator Overloading";

The strings strl and str2 are combined, and the result is stored in strl by invoking the functicn

Chapter 13: Operator Overloading 453

strcat () as follows:

strcat(strl, str2);
On execution str2 remains unchanged. In C++, such operations can also be performed by defining a
string class and overloading the + operator. A statement such as,

strl = strl + str2;
for concatenation of string, (where strl and str2 are the objects of a class string) would be
perfectly valid. The program string.cpp defines a st ring class and uses it to concatenate strings.

// string.cpp: Concatenation of strings
#include <iostream.h>

#include <string.h>

const int BUFF_SIZE = 50; // length of string

class string // user defined string class
{
private:
char str[BUFF_SIZE];
public:
string() // constructorl without arguments
{
strcpy(str, "*);
}
string(char *MyStr) // constructor2, one argument
{
strcpy(str, MyStr); // MyStr is copied to str
}
void echol() // display string
{
cout << str;
}
string operator +(string s) // overloading + operator
{
string temp = str; // creates object and strcpy(temp.str, str);
strcat(temp.sfr, s.str); // temp.str = temp.str + s.str
return temp; // return string object temp
} .
}i
void main()
{
string strl = "Welcome to "; // uses constructor?2
string str2 = “"Operator Overloading"; // uses constructor2
string str3; // uses constructorl, str3.str = NULL

// display strings of strl, str2, and str3
cout << "\nBefore str3 = strl + str2; ..":
cout << "*\nstrl = ";

strl.echo();

cout << "\nstr2 ;

str2.echo();
cout << "\nstr3
str3.echo();
str3 = strl + str2; // strl invokes its operator + function with str2

-

454 Mastering C++

// display strings of strl, str2, and str3
cout << "\nAfter str3 = strl + str2; ..*;
cout << "\nstrl = *;

strl.echo();

cout << "\nstr2 ;

str2.echo();

cout << "\nstr3 .

str3.echo();

)
Run

Before str3 = strl + str2;

strl = Welcome to

str2 = Operator Overloading

str3 =

After str3 = strl + str2;

strl = Welcome to

‘str2 = Operator Overloading

str3 = Welcome to Operator Overloading

The prototype of the string concatenation operator function
string operator +(string s) // overloading + operator
indicates that the + operator takes one argument of type string object and returns an object of the
same type. The concatenation is performed by creating a temporary string object temp and initial-
izing it with the first string. The second string is added to first string in the object temp using the
strcat () and finally the resultant temporary string object temp is returned. In this case, the length
of strl plus str2 should not exceed BUFF_SIZE. If it exceeds, then the behavior of the program
‘may be unpredictable. It can be overcome by testing the length of str1 plus str2 before concatenat-
ing them in the operator + () function of the string class and then taking appropriate actions.

13.11 Comparison Operators

Similar to arithmetic operators, the relational operators can be overloaded for comparing the magnitudes
of the operands. The relational operators can also operate on the user defined data-types similar to the
way they operate on primitive data-types. The program idxcmp.cpp demonstrates the overloading
of the comparison operator < to compare indexes.

// idxemp.cpp: Index comparison with overloading of < operator
#include <iostream.h>

enum boolean { FALSE, TRUE };

class Index

{

private:
int value; // Index Value
public:
Index () // No argument constructor
{
value = 0;

}

Chapter 13: Operator Overioading. 455

Index(int val) // Constructor with one argument
{
value = val;
}
int GetIndex() // Index Access
{
return value;
}
boolean operator < (Index idx) //compare indexes

{
return(value < idx.value ? TRUE : FALSE)i
}
}i
void main()
{
Index idx1l 5;
Index idx2 10;

cout << *\nIndexl = " << idxl.GetIndex();
cout << "\nIndex2 * << idx2.GetIndex():;
if(idxl < idx2)

cout << "\nIndexl is less than Index2";

else
cout << "\nIndexl is not less than Index2";

}

Bun
Indexl = 5
Index2 = 10

Indexl is less than Index2

The concept of overloading the comparison operator < in the above program is similar to overload-
ing arithmetic operators. The operator function < () returns TRUE or FALSE depending on the magni-
tudes of the Index operands.

Strings Comparison

The relational operators such as <, >, ==, etc., can be overloaded to operate on strings. These operators
return TRUE or FALSE depending on the contents of the string arguments. The program strcmp . cpp
illustrates the overloading of relational operators in a string-class.

// strcmp.cpp: Comparison of strings
#include <iostream.h>
#include <string.h>

const int BUFF_SIZE = 50; // length of string
enum boolean { FALSE, TRUE };
class string // user defined string class
{
private:

char str[BUFF_SIZE];
public:

456

}i

Mastering C++

string() // constructor without arguments
{
strcpy(str, "*);

}
void read() // read string
{
cin >> str;
// cout << str;
}
void echo() // display string

{
cout << str;

)

boolean operator < (string s) // overloading < operator
{
if(strcmp(str, s.str) < 0)
return TRUE; // str < s.str in lexicographical order
else
return FALSE;
}
boolean operator > (string s) // overloading > operator
{
if(stremp(str, s.str) > 0)

return TRUE; // str > s.str in lexicographical order
else
return FALSE;
}
boolean operator == (char *MyStr) // overloading == operator
{
if(strcmp(str, MyStr) == 0)
return TRUE; // str and MyStr are same
else
return FALSE;
}

void main()

{

string strl, str2; // uses constructor 1
while(TRUE)

{

cout << "\nEnter Stringl <'end' to stop>: ";
strl.read();

if(strl == “end”)

break;
cout << “Enter String2: *;
str2.read();

cout << "Comparison Status: ";

// display comparison status

// display format: Stringl "comparison status <, >, = " String2
strl.echo();

Chapter 13: Operator Overloading 457

if(strl < str2)
cout << " < ";
else
if(strl > str2)
cout << " > ";
else
cout << " = ";
str2.echo();

}
cout << "\nBye.!! That's all folks.!";

}

Run

Enter Stringl <'end' to stop>: C

Enter String2: C++

Comparison Status: C < C++

Enter Stringl <'end' to stop>: Rajkumax
Enter String2: Bindu

Comparison Status: Rajkumar > Bindu
Enter Stringl <'end' to stop>: Raikumar
Enter String2: Yenugopal

Comparison Status: Rajkumar < Venugopal
Enter Stringl <'end' to stop>: HELLO
Enter String2: HELLO

Comparison Status: HELLO = HELLO

Enter Stringl <'end' to stop>: end
Bye.!! That’s all folks.!

The overloaded operator functions of the class string uses the library function strcmp () to
compare the two strings. The strcmp (. .) operates as follows:
« It returns O if both the strings are equal
« It returns a negative value if the first string is less than the second one
o It returns a positive value if the first string is greater than the second one
The terms less than, greater than, or equal to are used in lexicographic sense to indicate whether the
first string appears before or after the second in the alphabetical order.

The prototype of string comparison function
boolean operator == (char *MyStr)
indicates that the == operator takes one argument of type pointer to character and returns TRUE or
FALSE depending on the operands weightage in lexicographical order. The strcmp () in the function
body compares the object’s attribute str with the argument MyStr. From this example, it is under-
stood that the arguments to an overloaded operator need not be of the same data-type, but the over-
loaded operator must be a member function of the first object.

13.12 Arithmetic Assignment Operators

Like arithmetic operators, arithmetic assignment Operators can also be overloaded to perform an arith-
metic operation followed by an assignment operation. Such statements are useful in replacing the
expressions involving operations on two operands and storing the result in the first operand. For

458 ~Mastering C++

instance, a statement such as
cl = cl + ¢2;
can be replaced by
cl += c2;

The program complex4 . cpp illustrates the overloading of arithmetic assignment operators to ma-
nipulate complex numbers.

// complex4.cpp: Overloading of +=, -=, *=, /= operators for complex class
#include <iostream.h>
class complex
{
private:
float real;
float imag;
public:
complex () // constructorl
{
real = imag = 0;
}
void getdata() // read complex number
{
cout << "Real Part ? ";
cin >> real;
cout << "Imag Part ? *;
cin >> imag;
}
void outdata(char *msg) // display complex.numker
{
cout << endl << msg;
cout << "(* << real;
cout << ", * << imag << ")";
}
void operator +=
void operator -=
void operator *=
void operator /=

complex c2);
complex c2);
complex c2);
complex c2);

}:

// addition of complex numbers, cl += c2 instead of cl = cl + c¢2;
void complex; :operator += (complex c2)

{

real = real + c2.real;

imag = imag + ¢2.imag;
}
// subtraction of complex numbers, cl -= c2, i.e., ¢l = ¢l - ¢2;
void complex: :operator -= (complex c2)

{

real real - c2.real;
imag = imag - c2.imag;

Chapter 13: Operator Overloading

// Multiplication of complex numbers, cl *= c2, instead of cl = cl*c2
void complex::operator *= (compléx c2)
{

complex old = *this; // *rhis is an object of type complex

real = old.real * c2.real - old.imag * c2.imag;
imag = old.real * c2.imag + old.imag * c2.real;
}

// Division of complex numbers, cl /=¢c2, i.e., cl =cl / c2
void complex: :operator /= (complex c2)

{
complex old = *this;
float qt;
qt = c2.real*c2.real+c2.imag*c2.imag;
real = (old.real * c2.real + old.imag * c2.imag)/qgt;
imag = (old.imag * c2.real - old.real * c2.imag) /qt;
}
void main()
{

complex cl, c2, c3;

// read complex numbers cl and c2

cout << "Enter Complex Number cl .." << endl;
cl.getdatal();

cout << "Enter Complex Number c2 .." << endl;
c2.getdatal();

cout << "Entered Complex Numbers are...";
cl.outdata("cl = ");

c2.outdata("c2 = *);

cout << endl << "Computational results aré...";
// c3 = ¢l + c2

c3 = cl;

c3 += c2;

c3.outdata("let ¢3 = cl, €3 += c2: ");

// ¢3 = ¢l - c2

c3 = cl;

c3 -= c2;

c3.outdata("let ¢3 = cl, 3 -=c2: ");

// ¢3 =c¢cl * c2

c3 = cl;

c3 *= c2;

c3.outdata({*let c3 = ¢l, €3 *= c2: ");

// c3 =¢cl / c2

c3 = cl;

c3 /= c2;

c3.outdata("let c3 = cl, c3 /= c2: ");

459

460 Mastering C++

Bun

Enter Complex Number cl ..

Real Part ? 2.5

Imag Part ? 2.0

Enter Complex Number c2 ..

Real Part ? 3.0

Imag Part ? 1.5

Entered Complex Numbers are...

cl = (2.5, 2)

c2 = (3, 1.5)

Computational results are...

let ¢3 = cl, ¢3 += ¢2: (5.5, 3.5)
let c3 = cl, c3 -= ¢2: (-0.5, 0.5)
let c¢3 cl, ¢3 *= c2: (4.5, 9.75)
let c3 cl, ¢3 /= c2: (0.933333, 0.2)

Observe the difference between the operator function + () defined in the program complex3 .cpp
and operator function += () defined in the program complex4 . cpp. In the former, a new temporary
object of complex type must be created and returned by the function, so that the resultant object can
be assigned to a third complex object, as in the statement

c3 = cl + c2;
In the latter, the function operator += () is a member function of the object (destination object's class),
which receives the result of computation. Hence, the function operator +=() has no return value;
it returns void type. Normally, the result of the assignment operation is not required. In a statement,
such as,

c3 += ¢2;
the operator alone is used without bothering about the return value.

The use of the arithmetic assignment operator in a complicated statement such as,
c3 = cl += c2;
requires a return value. Such requirements can be satisfied by having the function operator += (),
which terminates with the statement such as

return(*this);orreturn complex(real, imag);

In the first case, the current object is returned and in the latter case, a nameless object is created with
initialization and is returned as illustrated in the program complex5 . cpp.

// complexb.cpp: Overloading of += operator for complex expressions
#include <iostream.h>
class complex
{
private:
float real;
float imag;
public:
complex () // no argument constructor
{
real = imag = 0.0;
}

Chapter 13: Operator Overloading

void getdata() // read complex number
cout << "Real Part ? ";
cin >> real;
cout << -"Imag Part ? ";
cin >> imag;
}
complex operator + (complex c2); // complex addition
void outdata(char *msg) // display complex number

I3

!
cout << endl << msg;

cout << "(" << real:;
cout << '. " << imag << ")":
complex operator += complex c2);

Y:
// addition of complex numbers, cl += c2 instead of ¢l = cl + c2;
// return complex object *this or build temporary object and return
complex complex::operator += (complex c2)

real = real + c2.real;

imag = imag + c2.imag;

return{ *this); // *this is current object
1
void main()

{
complex cl, c2, c3;
cout << "Enter Complex Number cl .." << endl;
cl.getdatal();
cout << "Enter Complex Number c2 .." << endl;
c2.getdata();
// Performs 1. cl += c2 and 2. c3 =cl
c3 = cl += ¢c2; // .cl += c2 is evaluated first, and assigned to c3
cout << "\nOn execution of ¢3 = cl +=¢c2 ..";
cl.outdata("Compléx cl: ")
c2.outdata("Complex c2: ");
c3.outdata("Complex c3: ");

}

Bun

Enter Complex Number cl

Real Part ? 2.5

Imag Part ? 2.0

Enter Complex Number c2 ..
Real Part ? 3.0

Imag Part ? 1.5

On execution of c3 = ¢l += c2
Complex cl: (5.5, 3.5)
Complex c2: (3, 1.5)

Complex c3: (5.5, 3.5)

462 Mastering C++

13.13 Overloading of new and delete Operators

The memory allocation operators new and delete can be overloaded to handle memory resource in a
customized way. It allows the programmer to gain full control over the memory resource and to handle
resource crunch errors such as Out of Memory, within a class. The main reason for overloading these
functions is to increase the efficiency of memory management. An application designed to handle
memory allocation by itself through overloading can easily detect memory leaks (improper usage). It
can also be used to create the illusion of infinite amount of main memory (virtual memory, which exists
in effect but not in reality).

The program resource.cpp illustrates the overloading of new and delete operators. The
normal call to the new operator, such as

ptr = new vector;
dynamically creates a vector object and returns a pointer to that object. The overloaded operator

function new in the vector class not only creates an object, but also allocates the resource for its
“internal data members.

// resource.cpp: Overloading of new and delete operators
#include <iostream.h>

const int ARRAY_SIZE = 10;

class vector

{
private:
int *array:; // array is dynamically allocatable data member
public:
// overloading of new operator
void * operator new(size_t size)
{
vector *my_vector;
my_vector = ::new vector; // it refers td global new, otherwise
// leads to recursive call of vector::new
my_vector->array = new int[ARRAY_SIZE]; // calls ::new
return my_vector;
}
// overloading of delete operator
void operator delete(void* vec)
{
vector *my_vect;
my_vect = (vector *) vec;
delete (int *) my_vect->array; // calls ::delete
: :delete vec; // it refers to global delete, otherwise
// leads to recursive call of vector::delete
}
void read();
int sum();
}:
void vector::read()
{

for(int i = 0; i < ARRAY_SIZE; i++)

T

cout << "vector{" << i << "] =2? *;

Chapter 13: Operator Overioading 463

cin >> arraylil:

}
int vector: :sum()
{
int sum = 0;
for(int i = 0; i < ARRAY_SIZE; i++)
sum += arrayl[i]:
return sum;
}
void main ()
{
vector *my_vector = new vector;
cout << "Enter Vector data ..." << endl;
my_vector->read() ; '
cout << "Sum of Vector = " << my_vector->sum();
delete my_vector; '

)
Run

Enter Vector data ...
vector[0]
vector(l] =
vector([2] =
vector[3] =
vector[4] =
vector[5] =
vector[6] =
vector[7] =
vector(8] =
vector[9] = 7
Sum of Vector

TV RSO IS TN N RS RN BN A

I E;NJBJFlb\N?M-P’hJF'

55

_In main (), the statement
vecto:c_ *my_vector = new.vector;
invokes the overloaded operator member function
void * operator new(size_t size)
defined in the class vector as
void * .operator new(size_t size)

{
vector *my_vector;
my_vector = ::new vector; // it refers to global new, otherwise
// leads to recursive call of vector::new
my_vector->array = new int [ARRAY_SIZE]; // calls ::new
return my_vector;

}

In the above function, the statement
my_vector = ::new vector; //.it refers to global new, otherwise

creates an object of the vectcr class. If scope resolution operator is not used, the overloaded opera-

464 Mastering C++

tor function is called recursively leading to stack overflow. Hence, prefixing of the scope resolution
operator to the new operator forces to use the standard new operator supported by the language
instead of the one defined in the program. The class vector has a data item of type dynamic array,
defined by int *array. Another statement in the above function

my_vector->array = new int[ARRAY_SIZE]; // calls ::new
creates an array and dynamically allocates memory to it.

Similar to the overloaded new operator function, the overloaded delete operator function handles
the process of releasing memory that has been allocated during the dynamic object creation by the new
operator; it also releases the memory allocated to the internal data-item array through the function call

delete my_vector;
It invokes the overloaded operator function
void operator delete(void* vec)
to release the entire memory resource allocated to the my_vector object and its data members.

13.14 Data Conversion

Representing the same data in multiple forms is a common practice in scientific computations. It in-
volves the conversion of data from one form to another, for instance, conversidon from radian to degree,
polar to rectangular, and vice versa. Implicit invocation of the conversion procedure in C++ is achieved
by overloading the assignment operator, =. The assignment operator assigns the contents of a variable,
the result of an expression, or a constant, to another variable. For example,

varl = var2; // varl and var2 are defined as integer variables
assigns the value of var2 to varl which are of the same data-type. User defined objects of the same
class can also be assigned to one another. In a statement such as

c3 =cl + c2; // ¢l, c2, and ¢3 are objects of complex class

the result of addition, which is of type complex is assigned to another object c¢3 of complex class.
The assignment of one variable/object to another variable/object, which are of the same data-type is
achieved by copying the contents of all member data-items from source object to the destination object.
Such operations do not require any conversion procedure for the data-type conversion. In the above
expression, the result of (c1+c2) is of the same data-type as that of the destination object c3. Hence,
the compiler does not require any special instruction from the user to perform the assignment of objects.

Thus, assignment of data items are handled by the compiler with no effort on the part of the user,
whether they are basic or user defined provided both source and destination data items are of the same
data-type. In case the data items are of different types, data conversion interface function must be
explicitly specified by the user. These include conversions between basic and user-defined types or
between the user-defined data items of different types.

13.15 Conversion between Basic Data Types

Consider the statement

weight = age; // weight is of float type and age is of integer type
wherz weight is of type float and age is of type integer. Here, the compiler calls a special routine to
convert the vale of age, which is represented in an integer format, to a floating-point format, so that

Chapter 13: Operator Overloading 465

it can be assigned to weight. The compiler has several built-in routines for the conversion of ‘basic
data types such aschar to int, float todouble, etc. This feature of the compiler, which performs
conversion of data without the user intervention is known as impli¢it type conversion.
The compiler can be instructed explicitly to perform type conversion using the type conversion
operators known as rypecast operators. For instance, to convert int to float, the statement is
weight = (float) age;
where the keyword float enclosed between braces is the typecast operator. In C++, the above
statement can also be expressed in a more readable form as
weight = float(age);
The explicit conversion of £1oat to int uses the same built-in routine as implicit conversion.

13.16 Conversion between Objects and Basic Types

The compiler supports data conversion of only built-in data types supported by the language. The user
cannot rely on the compiler to perform conversion from user-defined data types to primitive data types
and vice-versa, because the compiler does not know anything about the logical meaning of user defined
data types. Therefore, to perform a meaningful conversion, the user must supply the necessary conver-
sion function. In this case, the conversion process can be from basic data types to user-defined data
types or from the user-defined data types to basic data types.

The process of conversion between the user-defined type and basic type is illustrated in the pro-
gram meter .cpp listed below. In this example, the user-defined type is the class Meter, which
represents a unit of length in the MKS measurement system. The basic type is £ 1oat, which is used to
represent a unit of length in CGS measurement system.

The conversion between centimeter and meter can be performed by the following relations:
Length in Cms = Length in Meters * 100
Length in Meters = Length in Cms / 100

Where and How the conversion function should exist ?

To convert data from a basic type to a user-defined type, the conversion function should be defined in
user-defined object's class in the form of the constructor. This constructor function takes a single
argument of basic data-type as shown in Figure 13.7.

Constructor of a class Primitive data item

N V.

Constructor (BasicType)
{

// steps for converting
// BasicType to Object attributes
}

Figure 13.7: Conversion function: basic to user-defined

In the case of conversion from a user-defined type to a basic type, the conversion function should
be defined in user-defined object's class in the form of the operator function. The operator function is
defined as an overloaded basic data-type which takes no arguments. It converts the data members of an

466 Mastering C++

object to basic data types and returns a basic data-item. The syntax of such a conversion function is
shown in Figure 13.8.

Keyword operator Primitive data type: char, int, float, etc.

N £~

operator BasicType()
{

// steps for converting

// Object attributes to BasicType
}

Figure 13.8: Conversion function: user-defined to basic

In the above syntax, it can be observed that the conversion operator function has no return type
specification. However, it should return BasicType value. The programmeter . cpp illustrates the
conversion of the Meter class's object to £1oat representing centimeter and vice-versa.

// meter.cpp: Conversion from Meter to Centimeter and vice-versa
#include <iostream.h>

// Meter class for MKS measurement system

class Meter

{

private:
float length; // length in meter
public:
Meter () "// constructor0, no arguments

{
length = 0.0;
}
// Conversion from Basic data-item to user-defined type
// InitLength is in centimeter unit
Meter (float InitLength) // constructorl, one argument
(
length = InitLength / 100.0; // centimeter to meter
}
// Conversion from user-defined type to Basic data-item
// i.e., from meter to centimeter
operator float()
{
float LengthCms;
LengthCms = length * 100.0; // meter to centimeter
return(LengthCms);
}
void GetLength()
{
cout << "\nEnter Length (in meters): *;
cin >> length;
}
void ShowLength ()
{

Chapter 13: Operator Overioading 467

cout << "Length (in meter) = " << length;
}:

void main ()
{
// Basic to User-defined conversion demonstration Section
Meter meterl; // uses constructor0
float lengthl;
cout << "Enter Length (in cms): *;
cin >> lengthl;
meterl = lengthl; // converts basic to user-defined, uses constructorl
meterl.ShowLength();
// User-defined to Basic conversion demonstration Section.
Meter meter2; // uses constructor®
float length2;
meter2.GetLength();
length2 = meter2; //converts user-defined to'basic, uses operator float()
cout << "Length (in cms) = " << length2;

}

Run

Enter Length (in cms): 150.0
Length (in meter) = 1.5

Enter Length (in meters): 1.669
Length (in cms) = 166.900009

Basic to User-Defined Data Type Conversion
In main (), the statement

meterl = lengthl; // converts basic to user-defined, uses constructorl
converts basic data item lengthl of £1loat type to the object meterl by invoking the one-argu-
ment constructor:

Meter (float InitLength) // constructorl, one argument
This constructor is invoked while creating objects of the class Meter using a single argument of type
£1oat. It converts the input argument represented in centimeters to meters and assigns the resultant
value to length data member.

The statements such as
Meter meterl = 150.0;
meterl = lengthl;
invokes the same conversion function. The only difference is, in the case of the first statement, the
conversion function is invoked as a part object creation activity, whereas in the case of the second
statement, the compiler first searches for the overloaded assignment operator function, and if that is not
found, it invokes the one-argument constructor.

The distinction between the function definition and the assignment operator overloading for type
conversion is blurred by the compiler; the compiler looks for a constructor if an overloaded = operator
function is not available to perform data conversion.

468 Mastering C++

User-Defined to Basic Data Type Conversion
Inmain (), the statement,

length2 = meter2; // convert user-defined to basic, uses operator float ()
converts the object meter?2 to the basic data-item of £1oat type by invoking the overloaded opera-
tor function:

operator float()
{
float LengthCms;
LengthCms = length * 100.0; // meter to centimeter
return(LengthCms);
}
The above conversion function can also be invoked explicitly as follows:
length2 = (float) meter2;
or as
length2 = float(meter2);

The compiler searches for the appropriate conversion function. First, the compiler looks for an over-
loaded = operator. If it does not find one, then it looks for a conversion function and invokes the same
implicitly for data conversion.

Conversion between Strings and String Objects

The program strconv.cpp demonstrates the use of a one argument constructor and a conversion
function.

// streonv.cpp: conversion between basic string (char *) and class string
#include <iostream.h> ‘

#include <string.h>

const int BUFF_SIZE = 50; // length of string

class string // user defined string class
(.
private:
char str[BUFF_SIZE];
public:
string() // constructorl without arguments

{
strcpy(str, “");
}
string(char *MyStr) // constructor2, one argument
{
strcpy(str, MyStr); // MyStr is copied to str
}
void eche () // display string
{
cout << str;
}
// conversion function to convert String object item to char * item
operator char * () // invoked if destination data-item is char* type

{

Chapter 13: Operator Overloading 469

return str;
}
}i
void main()

{

// Conversion fraom string of type char * to string object

char msg[20] = "OOPs the Great";
string strl; // uses constructor 1
strl = msg; // uses the function 'string(char *MyStr)’

cout << "strl = ";

strl.echo();

// Conversion from object to char * type

char *receive;

string strz = "It is nice to learn*;

receive = str2; // uses the function 'operator char * ()}’
cout << "\nstr2 = ";

cout << receive;

2 -

strl O0OPs the Great
str2 = It is nice to learn

In the above example, the one argument constructor
string(char *MyStr) // constructor2, one argument

{
strcpy(str, MyStr); // MyStr is copied to str
}
converts a normal string defined using char* to an object of class string. The string is passed as
an argument to the function; it copies the string MyStr to the sty data member of the object.

The conversion will be applied during creation of the string object with initialization or during the

assignment of a normal string to the string object. In the statement

string str2 = “It is nice to learn”;
the conversion of normal string to string object initialization is performed during creation of the
object str2. Whereas, in the statement

strl = msg; // uses the function 'string(char *MyStr)
the conversion of normal string defined as char* type variablemsg to string object initialization is
performed during assignment. The conversion function

operator char * () // jnvoked if destination data-item is char * type

{

return str;
}
is used to convert from a string object to a normal string. It is invoked by the the statement,
receive = str2; // uses the function 'operator char * ()
The object str2 can also be passed to the indirection operator << to display a string stored in the data
member str as shown in the statement,

470 Mastering C++

cout << str2;

The object str2 is passed as an argument to the overloaded output stream operator <<. But, it does
not know anything about the user-defined object str2. This is resolved by the compiler by searching
for a function which converts the object to a data-type known to the operator << (). In this case, the
compiler finds the operator function char* (), returning the char* type known to the stream opera-
tor. If the compiler does not find the conversion function, it reports an error

"Operator cannot be applied to these operands in function main()*

The program strconv.cpp clearly demonstrates the data conversions that take place not only
during object creation and in assignment statements, but also in the case of arguments passed to
operators (for instance, <<) or functions. Incompatible arguments can also be passed to an operator or
a function as long as there exists a conversion function. The incompatibility between the formal argu-
ments of the operator function and actual arguments is resolved by the compiler.

13.17 Conversion between Objects of Different Classes

The C++ compiler does not support data conversion between objects of user-defined classes. The data
conversion methods: one-argument constructor and conversion function can also used for conver-
sions among user defined data types. The choice between these two methods for data conversion
depends on whether the conversion function should be defined in the source object or destination
object. Consider the following skeleton code:

ClassA objecta;
ClassB objectb;

_ objecta = objectb;
vinere ébj ecta and objectb are the objects of classes ClassA and ClassB respectively. The
conversion method can be either defined in ClassA or ClassB depending on whether it should be a
one-argiiment constructor or an operator function.

Conversion Routine in Source Object: operator function

The conVersion routine in the source object’s class is implemented as an operator function. The seg-
ment of code shown in Figure 13.9 for class declaration demonstrates the method of implementing a
conversion routine inthe source object’s class.

In an assignment statement such as,
objecta = objectb;
objectb is the source object of the class ClassB and objecta is the destination object of the
class ClassA. The conversion function operator ClassA() exists in the source object’s class.

The program d2rl.cpp illustrates the concept of defining a conversion routine in the source
object. The conversion of an angle between degrees and radians is achieved by the following relations:

+ Angle in Radian = Angle in Degree * P1/180.0
+ Anglein Degree = Angle in Radian * 180.0/PI, where P1=22/7

Chapter 13: Operator Overioading

// Destination object class-
class ClassA

// ClassA stuff here

};

// Source object class
class ClassB

{

private:
// attributes of classB

public:
operator ClassA () -es==wemsme.. Conversion operator function

{

Destination object's class name

// program stuff for converting ClassB object
// to ClassA object attributes

};
Figure 13.9: Conversion routine in source object

// d2ri.cpp: Degree to Radian, Conversion Routine in Source class

#include <iostream.h>
const float PI = 3.141592654;

class Radian
{

private:
float rad; // radian
public:
Radian{() // constructor(0, no arguments
{
rad = 0.0;

}
Radian(float InitRad)

{

// constructorl

rad = InitRad;

}
float GetRadian() // Access function

{
return(rad);

}
void Output () // Display of radian

{
cout << "Radian = " << GetRadian();

}

471

472 Mastering C++

class Degree

{

private:
float degree; // Degree
public:
Degree () // constructor(0, no arguments

{
degree = 0.0;
}
// radian = degree; conversion routine at the source
// This function will be called if we try to assign
// object degree to object of type radian
operator Radian()
{
// convert degree to radian and create an object radian
// and then return, here radian constructorl is called
return(Radian(degree * PI / 180.0));
}
void Input() // Read degree
{
cout << "Enter Degree: ";
cin >> degree;
}
};
void main(void)

{

Degree degl; // degree using constructor0
Radian radl; // radian using constructor0
// Read Input values

degl.Input();

radl = degl; // uses 'operator Radian()'

// display radian and degree
radl.Output () ;

Run1
Enter Degree: 90Q
Radian = 1.570796

Run2
Enter Degree: 180
Radian = 3.141593

In main (), the statement
radl = degl; // uses ‘operator Radian(}’

assigns the degl object of class Degree to the radl object of the class Radian. Since both the
objects deg1 and radl are instances of different classes, the conversion during assignment opera-
tion is performed by the member function:

Chapter 13: Operator Overloading 473

operator Radian()

{

// convert degree to radian and create an object radian
// and then return, here radian constructorl is called
return(Radian(degree * PI / 180.0));
}
It is defined in the source object’s class Degree; it is chosen by the compiler for converting the object

degl to radl implicitly.

Conversion Routine in Destination Object: constructor function

The conversion routine can also be defined in the destination object’s class as a one-argument con-
structor. The segment of code shown in Figure 13.10 for class declaration demonstrates the method of
implementing a conversion routine in the destination object’s class.

// Source object class
class ClassB

{
// ClassB stuff here

}i

// Destination object class
class ClassA

{

private:
// attributes of classA Destination object's class name
public: .
object of a source class

ClasSh(ClassB objectb) -se=mewmmmme.. Constructor function
{

// program stuff for converting ClassB object

// to ClassA object attributes

// Private attributes of ClassB are accessed
// through its public functions

Figure 13.10: Conversion routine in destination object

In an assignment statement such as
objecta = objectb;
objectb is the source object of ClassBand objecta is thc destination object of class ClassA.
The conversion function (constructor function in this case) ClassA(ClassB objectb) is
defined in the destination object’s class. The program d2r2 . cpp illustrates the concept of defining
conversion function in the destination object.

// d2r2.cpp: Degree to Radian. Conversion Routine in the Destination object.

#include <iostream.h>
const float PI = 3.141592654:

474 Mastering C++

class Degree
{

private:
float degree; // Degree
public:
Degree() // constructor0, no arguments

{
degree = 0.0;
)

float GetDegree() // Access function
{

return(degree ‘) ;

}
void Input() // Read degree
{
cout << "Enter Degree: *;
cin >> degree;
}

Yi
class Radian

{
private:
float rad; // radian
public:
Radian() // constructor0, no arguments
{ .
rad = 0.0;
}
float GetRadian() // Access function

{
return(rad);
}
// radian = degree: Conversion routine is in destination object's class
Radian(Degree deg)
{
rad = deg.GetDegree() * PI / 180.0;
}

void Output() // Display of radian
{

cout << "Radian = ' << GetRadian();
}
}i
void main(void)

{

Degree degl; // degree using constructor0
Radian radl; // radian using constructor0
// Read Input values

degl.Input();

radl = degl; // uses Radian(Degree deg)
radl.Output(); // display radian and degree

Chapter 13: Operator Overloading 475

Run

Enter Degree: 90
Radian = 1.570796

Run2
Enter Degree: 180
Radian = 3.141593
In main (), the statement
radl = degl; // convert degree to radian, uses Radian(Degree deg)
assigns the user-defined object degl to another object rad1. Since, the objects degl and radl are
of different types, the conversion during the assignment operation is performed by a member function
Radian(Degree deg)

{
rad = deg.GetDegree() * PI / 180.0;

)
defined in the destination object’s class Radian as a one-argument constructor. It is chosen by the
compiler for converting the object degl's attributes to radl ‘s attributes implicitly. The construc-
tor must be able to access the private data members defined in the source object's class. The Degree
class defines the following interface function

float GetDegree() // Access function

{

return(degree);
)
to access the private data members. Note that, the body of the functionmain () in the programd2x2.cpp
is the same as that in the program d2rl.cpp, although the conversion methods have appeared in
different forms.

Complete Conversion

The program degrad.cpp illustrates the concept of defining conversion functions in the source or
destination object’s class. In this program, angles in degrees can be converted to radians or angles in
radians can be converted to degrees. The class Degree has conversion functions: constructor func-
tion and operator function. A class can have any number of conversion functions as long their signa-
tures are different.

/ / degrad.cpp: Degree to Radian data conversion and vice-versa
$include <iostream.h>

const float PI = 3.141592654;

class Radian

{
private:
float rad; // radian
public:
Radian () // constructorO, no arguments
{

rad = 0.0;
}

476 Mastering C++

Radian(float InitRad)
{ rad = InitRad; }
‘float GetRadian()

{

// constructorl, one argument

// Access function

return(rad);

}
void Input() // Read radian
{
cout << "Enter Radian: *;
cin >> rad;
}
void Output () // Display of radian
{
cout << "Radian = " << GetRadian() << endl;
1
}:
class Degree .
{
private:
float degree; // Degree
public:
Degree () // constructor(0, no arguments
R

degree = 0.0;
}
// degree = radian: Conversion routine at the destination
Degree(Radian rad)

// constructorl, one-argument constructor
{

degree = rad.GetRadian() * 180.0 / PI;
gloat GetDegree () //. Access function
(return(degree);
}/ radian = degree; conversion routine at the source
operator Radian()

{

// convert degree to radian and create an object radian
// and then return, here radian constructor 1 is called
return(Radian(degree * PI / 180.0));

Y

J

void Input() // Read degree
{

cout << "Enter Degree: ";
cin >> degree;

}

void Output () // Display output
(

cout << "Degree = " << degree << endl;

Chapter 13: Operator Overioading 477

void main(void)
{
Degree degl, deg2; // degree using constructor0
Radian radl, rad2; // radian using constructor0
// degree to radian conversion
degl.Input ()’
radl = degl; // convert degree to radian, uses "'operator Radian()"
radl.output () ;
// radian to degree conversion
rad2.Input();
deg2 = rad2; // convert radian to degree, uses Degree(Radian rad)
deg2.0utput () ;
}
Run
Enter Degree: 180
Radian = 3.141593
Enter Radian: 3.142
Degree = 180.023331

One-Argument Constructor or Operator Function ?

From the above discussion, it is evident that either the one-argument constructor or the operator
function can be used for converting objects of different classes. A wide variety of classes in the form of
class libraries are available commercially. But, they are supplied as object modules (machine code in
linkable form) and not as source modules. The user has no control over the modification of such
classes. This leads to a problem of conversion between the objects defined using the classes supplied
by the software vendors and objects defined using the classes declared by the user. This problem can
be circumvented by defining a conversion routine in the user-defined classes. It can be a one-argument
constructor or a operator function depending on whether the user-defined object is a source or destina-
tion object. The thumb rules for deciding where conversion routine has to be defined are the following:

« If the user-defined object is a source object, the conversion routine must be defined as an operator
function in the source object’s class.

« If the user-defined object is a destination object, the conversion routine must be defined as a one-
argument constructor in the destination object’s class.

« If both the source and destination object are the instances of user-defined classes, the conversion
routine can be placed either in source object’s class as a operator function or in destination object’s
‘class as a constructor function.

13.18 Subscript Operator Overloading

The subscript operator [] can be overloaded to access the attributes of an object. It is mainly useful
for bounds checking while accessing elements of an array. Consider the following definition

int a[10];
An expression such as a[20] is syntactically valid though it is accessing an element bcyond the
range. Such an illegal access can be detected by overloading subscript operators. The user defined
class can overload the []operator and check for validity of accesses to array of objects and permit
access to its members only when the index value is valid.

478 Mastering C++

An array of primitive data type can be accessed using integer subscripts only. However, when it is
overloaded, it can take parameters other than integer types, i.e., the argument of an operator function
{1 need not be an integer; it can be of any data type. The program script.cpp illustrates the
concept of overloading the subscript operator [].

// script.cpp: Subscripted operator overloading
#include <iostream.h>
#include <string.h>
typedef struct AccountEntry
{
int number; // account number
char name[25]; // name of account holder
} AccountEntry;
class AccountBook
{

private:
int aCount; // account holders count
AccountEntry account{10); // accounts table
public:
AccountBook(int aCountIn) // constructor 1

{
aCount = aCountlIn;

}

void AccountEntry();

int operator [] (char * nameln);

char * operator [] (int numberIn);
}i
// takes name as input, returns account number
int AccountBook: :operator (] (char *nameln)

{
for(int i = 0; i < aCount; i++)
if(strcmp(namelIn, account(i].name) == 0)
return account(i) .number; // found name, return its account number
return 90;

}

// takes number as input, returns name corresponding to account number
char * AccountBook::operator [] (int numberlIn)

{
for(int i = 0; i < aCount; i++)
if (numberIn == account(i].number)
return account[i] .name;
return 0;
}

void AccountBook: :AccountEntry ()
{
for(int i = 0; i < aCount; i++)
{
cout << "Account Number: *;
cin >> account(i].number;
cout << "Account Holder Name: *;
cin >> account[i] .name;

Chapter 13: Operator Overloading 479

}
}

void main()

{
int accno;
char name[25};
AccountBook accounts(5); // account having 5 customers
cout << "Building 5 Customers Database"” << endl;
accounts.AccountEntry () ; // read
cout << "\nAccessing Accounts Information*;
cout << "\nTo access Name Enter Account Number: *;
cin >> accno;
cout << *Name: " << accounts{accno]; //operator [] (int numberIn)
cout << "\nTo access Account Number, Enter Name: ";
cin >> name;
cout << "Account Number: " << accounts[name];
// uses, operator [] (char *nameln)
}
Bun

Building 5 Customers Database

Account Number: 1

Account Holder Name: Rajkumar

Account Number: 2

Account Holder Name: Kiran

Account Number: 3

Account Holder Name: Ravishanker
Account Number: 4

Account Holder Name: Anand

Account Number: 5

Account Holder Name: Sindhu

Accessing Accounts Information

T6 access Name Enter Account Number: 1
Name: Rajkumar

To access Account Number, Enter Name: Sindhu
Account Number: 5

In main (), the statement
accounts.AccountEntry () ; // read
reads a database of five account holders and initializes the object's data members. The statement
cout << "Name: " << accounts(accnol; // operator [] (int numberIn)
uses the function
char * operator [] (int numberlIn);
and returns the name of the account holder for a given account number. The statement
cout << "Account Number: " << accounts[name];
uses the function
int operator [] (char *nameln)

and returns the account number corresponding to the name of the given account holder’s name. The
compiler selects the appropriate function which matches with the actual parameter’s data type.

480 Mastering C++

13.19 Overloading with Friend Functions

Friend functions play a very important role in operator overloading by providing the flexibility denied
by the member functions of a class. They allow overloading of stream operators (<< or >>) for stream
computation on user defined data types. The only difference between a friend function and member
function is that, the friend function requires the arguments to be explicitly passed to the function and
processes them explicitly, whereas the member function considers the first argument implicitly. Friend
functions can either be used with unary or binary operators. The syntax of operator overloading with
friend functions is shown in Figure 13.11. '

— friend keyword
— Function return type : primitive, void, or user defined

Keyword
— Operator to be overloaded

— Arguments to
operator function
T —— e — e . e—— ...

friend ReturnType operator OperatorSymbol (argl [,arg2])
{

// body of Operator Friend function
}

Figure 13.11: Syntax of overloading with friend function

The prototype of the friend function must be prefixed with the keyword friend inside the class
body. The body of friend function can appear either inside or outside the body of a class. It is advisable
to define a friend function outside the body of a class. The definition of the friend function outside the
body of a class is defined as normal function and is not prefixed with the friend keyword. The
arguments of the friend functions are generally objects of friend classes. In a friend function, all the
members of a class (to which this function is a friend) can be accessed by using its objects. Friena
function is not allowed to access members of a class (to which it is a friend) directly, but it can access
all the members including the private members by using objects of that class.- Hence, a friend function
is similar to a normal function except that it can access the private members of a class using its objects.

Unary Operator Overloading using Friend Functions

The programn complex6 . cpp illustrates the concept of negation of complex numbers. The negation
function returns negated object without modifying the source object.

// complex6.cpp: Negation of complex number with Unary Operator
#include <iostream.h>
class complex
{
private:
float real;
float imag;
public:
complex() // no argument -constructor

{

real = imag = 0.0;

Chapter 13: Operator Overloading 481

}
void getdata(); // read complex number
void outdata(char *msg); // display complex number
// overloading of unary minus operator to support c2 = - cl
friend complex operator - (complex cl)
{
complex c;
c.real = -cl.real;
c.imag = -cl.imag;
return(c);
}

void readdatal();
}i
void complex::readdatal()
{
cout << "Real Part ? ";
cin >> real;
cout << "Imag Part ? ";
cin >> imag;

}
void complex::outdata(char *msg)
{
cout << endl << msg;
cout << " (" << real;
cout << ", " << imag << ")";
}
void main()
{
complex cl, c2;
cout << "Enter Complex cl.." << endl;
cl.readdata();
c2 = -cl; // invokes complex operator - ()
cl.outdata("Complex cl : ");
c2.outdata("Complex c2 = -Complex cl: ");
}
.Run

Enter Complex cl..

Real Part ? 1.5

Imag Part ? -2.5

Complex cl : (1.5, -2.5)

Complex c2 = -Complex cl: (-1.5, 2.5)

The complex number negation function without a friend is declared as follows:
complex operator - ()
In this case, arguments are implicitly assumed. Using the keyword friend, itis declared as follows:
friend complex operator - (complex cl)

The above friend operator function cannot access members of the class complex directly, unlike its
member functions. In main (), the statement

482 Méstering C++

c2 = -cl; // invokes unary operator function, complex operator - ()

computes the negation of c1 and assigns it to c2. It returns the negated result without negating
contents of the c1 object. The object c1 is passed as a value parameter to the negate operator function
and any modification to its data members will be reflected in the c1 object.

The negation operation can also be applied to an object to modify its data members. In this case, the
same object acts both as a source and a destination object. It is similar to representing a negative
number. This can be achieved by passing the object as a reference parameter to the negation operator
function so that, the negation of its data members can be also reflected in the calling object. The
program complex7.cpp illustrates the concept of negation of complex numbers having the same
source and destination operands.

// complex7.cpp: Negation of Complex Number with Unary Operator Overloading
#include <iostream.h> '
class complex
{
private:
float real;
float imag;
public:
complex() { real = imag = 0; }
void readdata();
void outdata(char *msg);
// Note: friend function with explicit reference parameter
// overloading of unary minus, -cl
friend void operator - (complex & cl); // definition outside
}:
// friend function of the class complex
// Note that, the keyword friend should not prefixed while defining outside
void operator - (complex & cl)
(

cl.real ~cl.real;
cl.imag = -cl.imag;
}
void complex: :readdata/()
{
cout << "Real Part ? ";
cin >> real;
cout << "Imag Part ? ";
cin >> imag;
}
void complex::outdata(char *msg)
{
cout << endl << msy;
cout << "(* << real;
“cout << ", " << imag << *)*";
}
void main ()
{
complex cl;

Chapter 13: Operator Overloading 483

cout << "Enter Complex cl.." << endl;
cl.readdata();
-cl; // invokes unary operator function, complex operator - ()
cl.outdata("Result of -Complex cl: ");
}

Run

Enter Complex cl..

Real Part ? 1.5

Imag Part ? -2.5

Result of -Complex cl: (-1.5, 2.5)

Inmain (), the statement
-cl; // invokes unary operator function, complex operator - ()
invokes the function
void operator - (complex & cl)

by passing the object c1 by reference. Thus, the negation of c1 in the function is also reflected in the
calling object. Note that, the definition of operator friend function is the same as normal functions.

Binary Operator Overloading using Friend Function

The complex number discussed in the program complex2 . cpp can be modified using a friend opera-
tor function as follows:

1. Modify the member function prototype as follows:

friend complex operator + (complex cl, complex c2)
2. Redefine the operator function as follows:

friend complex operator + (complex cl, complex c2)

{
complex ¢;
c.real = cl.real + c2.real;
c.imag = cl.imag + c2.imag;
return(¢ };
}
In the above definition, the input object parameters c1 and c2 are handled explicitly without consider-
ing the first argument as an implicit argument. The statement
c3 =cl + ¢c2;
is equivalent to the statement
c3 = operator + (cl, c2);
The result generated by the friend function is same as that generated by the member function. But,
friend functions offer the flexibility of writing an expression as a combination of operands of user
defined and primitive data types. For instance, consider the statement
c3 =cl + 2.0;
The expression c1 + 2.0 is made up of the object c1 and a primitive type. In case of an operator
member function, both the operands must be of object’s data type. When the friend operator functions
are used, both the operands need not be instances of user-defined data type. It requires a parameterized
constructor taking a primitive data type parameter. The program complex8 . cpp illustrates the con-
cept of overloading an operator function as a friend function.

484 Mastering C++

// complex8.cpp: Addition of Complex Numbers with friend feature
#include <iostream.h>
class complex

{
private:
float real;
float imag;
public:
complex ()
{}
complex(int realpart)
{
‘real = realpart;
}
void readdatal()
{
cout << “"Real Part ? ";
cin >> real;
cout << "Imag Part ? ";
cin >> imag;
}
void outdata(char *msg) // display complex number
{
cout << endl << msg;
cout << " (" << real;
cout << ", " << imag << ")*;
}
friend complex operator + (complex cl, complex c2);
}i

// note that friend keyword and scope resolution operator are not used
complex operator + (complex cl, complex c2)
{
complex c;
c.real = cl.real + c2.real;
c.imag = cl.imag + c2.imag;
return(¢);
}

void main()
{
complex cl, c2, c3 .= 3.0;

cout << "Enter Complexl cl..:" << endl;
cl.readdataf);
cout << "Enter Complex2 c2..:" << endl;

c2.readdata();

c3 =cl + c2;

c3.outdata("Result of ¢3 = cl + c2: *);

// 2.0 is considered as real part of complex
c3 =cl + 2.0; // ¢3 = cl + complex(2.0)
c3.outdata("Result of ¢3 =cl + 2.0; ");
// 3.0 is considered as real part of complex

Chapter 13: Operator Overloading 485

c3 = 3.0 + c2; // ¢3 = complex(3.0) + c2
c3.outdata("Result of ¢3 = 3.0 + c2: " };
}
Run
Enter Complexl cl. .:
Real Part ? 1
Imag Part ? 2
Enter Complex2 c2..:
Real Part ? 3
Imag Part ? 4
Result of c3
Result of c¢3
Result of c3

cl + c2: (4, 6)
cl + 2.0: (3, 2)
3.0 + c2: (6, 4)

In main (), the statement

c3 =cl + 2.0; 7/ ¢3 = cl + complex(2.0)
has an expression, which is a combination of the object c1 and the primitive floating point constant 2.0.
Though, there is no member function matching this expression, the compiler will resolve this by treating
the expression as follows:

c3 = cl + complex(2.0 });
The compiler invokes the single argument constructor and converts the primitive value to a new tempo-
rary object (here 2.0 is considered as a real part of the complex number) and passes it to the friend
operator function:

friend complex operator + (complex cl, complex c2)
The sum of the object c1 and a new temporary object complex(2.0) is computed and assigned
to object ¢ 3. The new temporary objects are destroyed immediately after execution of the statement due
to which it is created. The above expression can also be written as

c3 =2.0 +cl;
Recall that the left-hand operand is responsible for invoking its member function; but this statement has
a numeric constant instead of an object. The outcome of either expression is the same, since the
compiler treats it as follows:

¢3 = complex(2.0) + ci;

In C++, an object can be used not only to invoke a friend function, but also as an argument to a

friend function. Thus, to the friend operator functions, a built-in type operand can be passed either as
the first operand or as the second operand.

Overloading Stream Operators using Friend Function

The iostream facility of C++ provides an easy means to perform I/O. The class istream uses the
predefined stream cin that can be used to read data from the staidard input device. The extraction
operator >> is used for performing input operations in the iostream library. The insertion operator
<< is used for performing output operations in the iostream library.

Similar to the built-in variables, the user-defined objects can also be read or displayed using the
stream operators. In case of the overloaded operator << function, the ostream & is taken as the first
argument of a friend function of a class. The return value of this friend function is of type ostream &
ds shown in Figure 13.12.

486 Mastering C++

— Keyword
—— Output stream class

— Reference type return
Keyword
Output stream operator
Output stream object: cout

I——' User defined object
e ——

friend ostream & operator << (ostream &Out,

{

arg)

// display attributes of user defined object:arg with cout or Out

return OUt; et Reference object return: cout
)

Figure 13.12: Overloading output stream operator as friend function

Similarly, for overloading the >> operator, the istream & is taken as the first argument of a friend
function of the class. The return value of this friend function is of type ist ream & as shown in Figure
13.13. In both the cases, a reference to an object of the current class is taken as the second argument and
the same is returned by reference.

—» Keyword
—> Input stream class

— Reference type return

Keyword
Input stream operator
Input stream object: cin
l——’ User defined object
T — e —

friend istream & operator >> (1stream &In, arg)

{
// read attributes of object arg with In or cin object
return In; —ees————. Reference object return: cin

}

Figure 13.13: Overloading input stream operator as friend function

The program complex9 . cpp illustrates the flexibility of overloading stream operators and their
usage with objects of the user defined data type.

// complex9.cpp: Addition of Complex Numbers with stream overloading
#include <iostream.ix>

class complex
{
private:
float real;
float imag;
public:

Chapter 13: Operator Overloading 487

complex() { }

complex(float InReal)
{

InReal;

0;

1]

real
imag

}
void outdatal();
friend complex operator + (complex cl, complex c2)
{
complex c;
c.real = cl.real + c2.real;
c.imag = cl.imag + c2.imag;
return{ c);
}
friend istream & operator >> (istream &In, complex &c);
friend ostream & operator << (ostream &Out, complex &c);
}i
istream & operator >> (istream & In, complex & c)
{ .
cout << "Real Part ? ";
In >> c.real; // cin >> c.real;
cout << "Imag Part ? ";
In >> c.imag; // cin >> c.imag;
return In;

}
oscream & operator << (ostream &Out, complex & C)
{
Out << "(" << c.real; // or cout << "Real = " << c.real;

Out << ", " << c.imag << ")"; // cout in place of Out
return Out;

}

void main()
{
complex cl, c2, c3 = 3;
cout << "Enter Complexl cl..:" << endl;
cin >> cl;
cout << "Enter Complex2 c2..:" << endl;
cin >> c¢2;
c3 =cl + c2;
cout << "Result of ¢3 =cl + c2: ";
cout << c3;
// 2.0 is considered as real part of complex
c3 =cl +2.0; // ¢3 = cl + complex(2.0)
cout<<endl<<"Result of ¢3 = cl + 2.0: "; //ec3=cl + complex(2.0);
cout << c3;
// 3.0 is considered as real part of complex
c3 = 3.0 + c2;
cout<< endl<<"Result of c¢3 = 3.0 + c2: *; //c3=complex(3.0)+ c2;
cout << c3;

488 Mastering C++

Run

Enter Complexl cl..:

Real Part ? 1

Imag Part ? 2

Enter Complex2 c2..:

Real Part ? 3 N
Imag Part ? 4

Result of ¢c3 = cl + c2: (4, 6)

Result of c3 cl + 2.0: (3, 2)

Result of c3 3.0 + c2: (6, 4)

In main (), the statements
cin >> cl;
cin >> c2;
read user-defined class's objects c1 and c2 in the same way as built-in data type variables by using the
input stream operator. Also, the sum of the complex numbers ¢1 and c2 stored in ¢3 is displayed by
the statement,
cout << c3;
similar to any built-in data item using the output stream operator. The overloaded stream operator
functions performing I/O operations with complex numbers are the following:
friend istream & operator >> (istream &In, complex &c);
friend ostream & operator << (ostream &Out, complex &c);
The classes istream and ostream are defined in the header file iostream.h, which has been
included in the program. C++ does not allow overloading of operators listed in Table 13.2 as friend
operator functions. They can, however be overloaded as operator member functions.

Operator Category Operators
Assignment =
Function call ()
Subscribing []
Class Member Access ->

Table 13.2: Operators that cannot be overloaded as friend operators

13.20 Assignment Operator Overloading

The compiler copies all the members of a user-defined source object to a destination object in an
assignment statement, when its members are statically allocated. The data members, which are dynami-
cally allocated must be copied to the destination object explicitly by overloading the assignment opera-
tor. Two examples of this process are the assignment operator and the copy constructor. Consider the
following statements:

vector vi(5), v2(5);
vl = v2; // operator = invoked

Chapter 13: Operator Overloading 489

vector v3 = v2; // copy constructor is invoked

The first statement defines two objects v1 and v2 of the class vector. The second assignment
statement

vl = v2;

will cause the compiler to copy the data from v2, member-by-member, into v1. The action is similar to
the default operation performed by the assignment operator. The next statement

vector v3 = v2;

initializes one object with another object during definition. This statement causes a similar action after
creating the new object v3. The data members from v2 are copied member-by-member into v3. This
action is similar to the operation performed by the copy constructor, by default.

The default actions performed by the compiler (to perform assignment operation) are insufficient if
the object's state is dynamically varying. Such objects can be processed by overriding these default
actions. The program vector . cpp illustrates the concept of overriding default actions by the user-
defined overloaded assignment operator and copy constructor.

/ / vector.cpp: overloaded assignment operator for vector elements copying
#include <iostream.h>
class vector
{
int * v; // pointer to vector
int size; // size of vector v
public:
vector (int vector_size)
{
size = vector_size;
v = new int[vector_size };
}
vector (vector &v2);
~vector ()
{
delete v;
}
void operator = (vector & v2);
int & elem(int i)
{
if(i >= size)
cout << endl << "Error: Out of Range";
return v[i];
}
void show();
};

// copy constructor, vector vl = v2;

vector: :vector (vector &v2)

{
cout << *"\nCopy constructor invoked";
size = v2.size; // size of vl is equal to size of v2
v = new int[v2.size }; // allocate memory of the vector vl

490 Mastering C++

for(int i = 0; i < v2.size; i++)
vii] = v2.v[i};

}

// overloading assignment operator, vl = v2, vl is implicit
void vector: :operator = (vector & v2)
{
cout << "\nAssignment operation invoked";
// memory is already allocated to the vector and vl.size = v2.size
for(int i = 0; i1 < v2.size; i++)
v(ii] = v2.v[i];

}

void veccor: :show()

{

for(int i = 0; i < size; i++)
cout << elem(i) << ", *;

}

void mai..()

{

int 1i;
vector v1(S), v2(5);

for(i =0; i < 5; i++)

v2.elem(i) =i + 1;
vl = v2; // operator = invoked
vector v3 = v2; // copy constructor is invoked

cout << "\nvector vl: *;
vl.show();
cout << "\nvector v2: *;
v2.show() ;
cout << "\nvector v2: *;
v3.show();

}

Run

Assignment operation invoked
Copy constructor invoked
vector v1: 1, 2, 3, 4, 5,
vector v2: 1, 2, 3, 4, 5,
vector v2: 1, 2, 3, 4, 5,

The overloaded = operator function does the job of copying the data members from one object to
another. The function also prints a message to assist the user in keeping track of its execution.

The copy constructor
vector (vector &v2);
takes one argument, an object of the type vector, passed by reference. It is essential to pass a
reference argument to the copy constructor. It cannot be passed by value. When an argument is passed
by value, its copy is constructed using the copy constructor, i.e., the copy constructor would call itself
to make this copy. This process would go on until the system runs out of memory. Hence, arguments to
the copy constructor must be always passed by reference, thus preventing creation of copies. A copy

Chapter 13: Operator Overloading 491

constructor also gets invoked when arguments are passed by value to functions and when values are
returned from functions. When an object is passed by value, the argument on which the function
operates is created using a copy constructor. If an object is passed by its address or reference, the copy
constructor of course would not be invoked, and the copies of the objects are not created. When an
object is returned from a function, the copy constructor is invoked to create a copy of the value returned
by the function. ’

13.21 Tracing Memory Leaks

Memory fragmentation can affect program performance, but memory leaks fréquently cause programs
to crash. A memory leak occurs when the user program fails to free an allocated memory block. The
new operator can be overloaded to write signature bytes for the blocks it allocates. The meaning of
memory leak is that dynamic memory being allocated (newed) without being teleasing (deleted). The
¢xecutable size quickly outgrows the size of memory in the machine, requiring an undesirable amount of
swapping activity. The first step in attacking this problem is to find wherc memory is being requested,
used, and not returned.

Approach

In C++, itis easy to overload the built-innew and delete operators with user-supplied versions and
thereby determine when the memory is requested and to which memory location it is bounded. The
program mleak.cpp overloads new and delete operators and records the memory location to
which the request is bound, in the disk file space.raw. It also records all those bindings that are
released using explicit memory free request command.

// mieak.cpp: Memory leak tracing
#include <iostream.h>

#include <stdio.h>

#include <process.h>

#include <alloc.h>

#include <string.h>

//global information

static space_debug = 1; // space_debug switch, ON
FILE * fp_space = NULL; // file pointer to the debug info
void * operator new(size_t size)
{
void *ptr;

if (space_debug)
{
if(fp_space == NULL) // first time call to new or delete

{
// open leak debug info file which is unopened
if((fp_space = fopen("space.raw", "w")) == NULL)
{
cout << "Error opening space.raw in write mode";
exit(1);

492 Mastering C++

if((ptr = malloc(size)) == NULL)
{
cout << “out of memory space”;
exit(1);
}
if (space_debug) // debug switch is ON, store memory info

fprintf(fp_space, "new(%d) -> %x\n", size, ptr);
return ptr;
}
void operator delete(void *ptr)
{
if(space_debug)
{
// open leak debug info file which is unopened
if(fp_space == NULL) // first time call to new or delete
{
if((fp_space = fopen("space.raw", "w")) == NULL)
{
cout << "Error opening space.raw in write mode*;
exit(1);

}
}
if(ptr) // if valid pointer
{
free((char *) ptr);
if(space_debug) // debug switch is ON, store memory info
fprintf(fp_space, "free <- $x\n", ptr };
N
}
void main()
{
int *vector;
char *buffer;
vector = (int *) new int[10];
buffer = (char *) new char[6];
for(int i = 0; i < 10; i++)
vector[i] = i+1;
strcpy(buffer, "hello");
cout << "vector = ";
for(i =0; i < 10; i++)
cout << vector(i] << " *;
cout << endl << "buffer = " << buffer;
delete vector; // vector is deallocated
fclose(fp_space);
}

Run
vector
buffer

123456782910
hello

Chapter 13: Operator Overioading 493

The space_debug variable allows the programmer to decide whether to trace a particular portion
of code or not. When tracing is desired it must be set to a nonzero (debug ON) value. When the
following statements:

vector = (int *) new int[10];

buffer = (char *) hew char[6 1;)
are invoked in the program, the overloaded new operator allocates the requested amount of memory
and returns a pointer to the memory location to which it is bound. In addition, it records this memory
address to which it is bound, in the disk file space . raw. Similarly, the overloaded delete operator
releases the memory pointed to by the input pointer and also records the memory address in the disk
file..In the above Run, the information recorded in space . raw file is the following:

new(36) -> bd2
new(516) -> bfa
new{ 36) -> e02
new(516) -> e2a
new(36) -> 1032
new(516) -> 105a
new(10) -> 1262
new(6) -> 127a
free <- 1262
free <- bfa

free <- bd2

free <- e2a

free <- e02

free <- 105a

“ree <- 1032

The first six requests are made by the program execution start-up routine. They can be discarded in
the memory leak tracing analysis. The seventh and eighth requests are made in the program explicitly.
Similarly, the last six memory free requests made by the system, can be discarded during analysis.
These requests vary from system to system. The first request to free memory is made by the statement

delete vector; // vector is deallocated
The pointer returned for the requests

vector = (int *) new int[10 1;
buffer = (char *) new char[6];
are the following

new(10) -> 1262

new(6) -> 127a
By tracing the above allocation address information in the free list, it can be detected that new (6)
pointer address is not released, leading to memory leak. In the program it can be observed that, the
mémory allocated for the variable vector is released explicitly whereas, the memory allocated for the
variable buf fer is not released. It can also be noticed from the trace of memory debug information.

13.22 Niceties of Operator Overloading and Conversions

Operator overloading and data conversion features of C++ provide an opportunity to the user. to
redefine the C++ language. Polymorphism feature of C++ is a bonus for the user to customize C++to
their taste. Of course, it can be misused, since C++ does not restrict the user from misusing (exploiting)

494 Mastering C++

the feature of operator overloading. Consider an example of overloading the + operator to perform
arithmetic on the user-defined objects x, y, and z. The statement,

X =Yy + 2z;
can represent a different meaning as compared with that conveyed by the operation with basic data
types. In the body of overloaded function, even if subtraction operation is performed instead of addi-
tion, C++ neither signals an error nor restricts such operation. The above operation can also mean
concatenation of strings y and z, and storing the result in x (x, y, and z are object’s of St ring class).
Thus, operator overloading provides the ability to redefine the building blocks of the language and
allows to manipulate the user-defined data-items in a more intuitive and readable way.

The program misuse . cpp illustrates the misuse of the operator ovérloading feature in C++. The
compiler only validates syntax errors but not the semantics.

// misuse.cpp: Misuse of operator overloading, performs subtraction instead
// of addition operation

#include <iostream.h>

class number

{
private:
int num;
public:

void read() // number read function

{
cin >> num;

}

int get{() // private member num access function

(S
return num;

}

// overloaded operator for number addition

number operator+(number num2)

{
number sum;
sum.num = num - num2.num; // subtraction instead of addition
return sum;

}

}i

void main()
{

number numl; num2, sum;

cout << "Enter Number 1: *;

numl.read() ;

cout << "Enter Number 2: ";

num? .read() ;

sum = numl + num2; // addition of number
cout << "sum = numl + num2 = " << sum.get();

}
Runi

Enter Number 1: 20

Chapter 13: Operator Overloading 495

Enter Number 2: 10
sum = numl + num2 = 10

Run2

Enter Number 1: 5
Enter Number 2: 10
sum = numl + num2 = -5

In main(), the statement
sum = numl + num2; // addition of number
is supposed to perform addition of two numbers numl and num2, but instead it performs subtraction.
The statement in the body of the overloaded operator function number operator+(..)
sum.num = num - num2.num; // instead of addition, subtraction is done
performs subtraction instead of addition. Such neglected use of operator overloading is not taken care
by the C++ compiler, but it is the responsibility of the programmer.

As operator overloading is only a notational convenience, the language should try to prevent its
misuse (but C++ does not prevent). It is indeed said that the meaning of operators applied to standard
data types cannot be redefined. The intent is to make C++ extensible, but not mutable. Hence,
operators cannot be overloaded for enumerations, although it would be sometimes desirable and fully
sensible.

Guidelines

It is essential to follow syntax and semantic rules of the language while extending the power of C++
using operator overloading. In fact, operator overloading feature opens up a vast vistas of opportuni-
ties for creative programmers (for instance, new and delete can be overloaded to detect memory
leaks as illustrated earlier). The following are some guidelines that needs to be kept in mind while
overloading any operators to support user defined data types:

1. Retain Meaning

Overloaded operators must perform operations similar to those defined for primitive/basic data types.
The operator + can be overloaded to perform subtraction; operator * can be overloaded to perform
division operation. However, such definitions should be avoided to retain the intuitive meaning of the
operators. For example, the overloaded operator + () function operating on user-defined data-items
must retain a meaning similar to addition The operator + could perform the union operation on set data
type, concatenation on string data type, etc.

2. Retain Syntax
The syntactic characteristics and operator hierarchy cannot be changed by overloading. Therefore,
overloaded operators must be used in the same way they are used for basic data types. For example, if
1 and c2 are the objects of complex class, the arithmetic assignment operator in the statement

cl += ¢2;
sets c1 to the sum of c1 and c2. The overloaded version of any operator should do something
analogous to the standard definition of the language. The above statement should perform an opera-
tion similar to the statement

cl = cl + c2;

496 Masiering C++

3. Use Functions when Appropriate
An operator must not be overloaded if it does not perform the obvious operation. It should not demand
the user's effort in order to identify the actual operation performed by the operator. The main aim of
overloading is to make the program code more readable. If the meaning of an operation to be performed
by the overloaded operator is unpredictable or doubtful to the user, it is advisable to use a more
descriptive and meaningful function name.

4. Avoid Ambiguity

The existence of multiple data conversion routines performing the same operations, places the compiler
in an ambiguous state. It does not know which one to select for conversion. For instance, existence of
a one-arguinent constructor in the destination object’s class and operator function also in the source
object’s class performing the same conversion function, confuses the compiler; it does not know which
one to select and issues an error message. Therefore, avoid defining multiple routines performing the
same operation, which become ambiguous during compilation. The program confuse. cpp illus-
trates the ambiguity which arises when multiple conversion routines exists in a program.

// confuse.cpp: conversion routines for object A's to object B

class B; // forward specification
class A // source class
{
// data members of the class A
public:
A()
)

// conversion routine in source, operator function
operator B()

{
B b_obj;
// convert A class's object into class B's object, b_obj
return b_obj;
}
// other member functions of the class A
}i
class B // destination class
{
// data members of the class B
public:
B()
)

// conversion routine in destination, one-argument constructor
B(A a_obj)
{
// convert source class A's object to initialize data members of B

}
// other member functions of the class B

}:

void main(void)

{

A a_obj;

Chapter 13: Operator Overioading 497

B b_obj;
b_obj = a_obj;
// other operations on objects of the classes A and B if necessary

In main (), the statement
b_obj = a_obj;
leads to the following compilation error:

Error confuse.cpp 35: Ambiguity between 'A::operator B()’ and 'B::B(A)"

in function main()
It is because the source object a_ob3j’s class A has operator conversion function and the destination
objectb_obj’'s class B also has conversion function in the form of one-argument constructor function.

5. All Operators Cannot be Overloaded

-C++ supports a wide variety of operators, but all of them cannot be overloaded (see Table 13.3) to
operate in an analogous way on standard operators. These excluded operators are very few compared
to the large number of operators, which qualify for overloading.

Operator Category Operators
Member access (dot operator)
Scope resolution :: (global access)
Conditional 2: (conditional statement)
Pointer to member *
Size of Data Type sizeof(..)

Table 13.3: Non-Overloadable C++ operators

An operator such as ?: has an inherent meaning and it requires three arguments. C++ does not
support the overloading of an operator, which operates on three operands. Hence, the conditional
operator, which is the only ternary operator in the C++ language, cannot be overloaded.

Review Questions

13.1 What is operator overloading ? Explain the importance of operator overloading.

13.2 List the operators that cannot be overloaded and justify why they cannot be overloaded.

13.3 What is operator function ? Describe operator function with syntax and examples.

13.4 Write a program to overload unary operator, say ++ for incrementing distance in FPS system.

, Describe the working model of an overloaded operator with the same program.

13.5 What are the limitations of overloading unary increment/decrement operator ? How are they
overcome ?

13.6 Explain the syntax of binary operator overloading. How many arguments are required in the
definition of an overloaded binary operator ?

13.7 Write a program to overload unary operator for processing counters. It should support both
upward and downward counting. It must also support operator for adding two counters and
storing the result in another counter.

498

13.8
13.9

13.10

13.11

13.12

13.13

13.14
13.15

13.16

13.17

13.18

13.19

13.20

Mastering C++

Write a program to overload arithmetic operators for manipulating vectors.
Overload new and delete operators to manipulate objects of the Student class. The Stu-
dent class must contains data members such as char *name, int roll_no, int branch,
etc. The overloaded new and delete operators must allocate memory for the Student class
object and its data members.
Design classes called Polar and Rectangle for representing a point in the polar and rect-
angle systems. Support data conversion function to support statements such as:
Rectangle rl, r2; Polar pl, p2;
rl = pl; p2 = r2;
Write a program to manipulate N student objects. Overload the subscript operator for bounds
checking while accessing i™ Student object.
Why is the friend function not allowed to access members of a class directly although its body
can appear within the class body ?
Write a program to overload stream operators for reading or displaying contents of Vector
class's objects as follows:
cin >> vl; cout << v2;
Suggest and implement an approach to trace memory leakage.
State with reasons whether the following statements are TRUE or FALSE:
(a) Precedence and associativity of overloaded operators can be changed.
(b) Semantics of overloaded operators can be changed.
(c) With overloading binary operator, the left and right operands are explicitly passed.
(d) The overloaded operator functions parameters must be user-defined objects only.
(e) A constructor can be used to convert a user-defined data types only.
(f) An object of a class can be assigned to basic type operand.
(g) Syntax of overloaded operators can be changed.
(h) The parameter type to overloaded subscript {] operator can be of any data type.
(i) Friend function can access members of a class directly.
(j) The ternary operator can be overloaded.
(k) The compiler reports an error if overloaded + operator performs - operation.
Design classes such that they support the following statements:
Rupee rl, r2; Dollar dl, d42;

dl = r2; // converts rupee (Indian currency) to dollar (US currency)
r2 = d2; // converts dollar (US currency) to rupee (Indian currency)
Write a complete program which does such conversions according to the world market value.

Write a program for manipulating linked list supporting node operations as follows:
node = node + 2; node = node - 3;
The first statement creates a new node with node information 2 and the second statement
deletes a node with node information 3.
Write a program for creating a doubly linked list. It must support the following operations:
firstnode = nnde; firstnode += 10; Node *n = nodel + node2;
The doubly linked list class should have overloaded node creation and deletion operator func-
tion should appear in the form of overloaded + and - operator functions respectively.
Write an interactive operator overloaded program for manipulating matrices. Overload operators
such as >>, <<, +, -, *, ==,
Write an interactive operator overloaded program to manipulate the three-variable polynomial:
ax'y'z" + a_x"'y"'z"'+ ..+ ax'y'z' +a

14

Inheritance

14.1 Introduction

Inheritance is a technique of organizing information in a hierarchical form. It is like a child inheriting the
features of its parents (such as beauty of the mother and intelligence of the father). In real world, an
object is described by using inheritance. It derives general properties of an object by tracing an inher-
itance tree from one specific instance, upwards towards the primitive concepts at the root.

Inheritance allows new classes to be built from older and less specialized classes instead of being
rewritten from scratch. Classes are created by first inheriting all the variables and behavior defined by
some primitive class and then adding specialized variables and behaviors. In object oriented program-
ming, classes encapsulate data and functions into one package. New classes can be built from existing
ones, just as a builder constructs a skyscraper out of bricks, stone, and other relatively simple material.
The technique of building new classes from the existing classes is called inheritance.

Feature A

Base class Feature B

Feature C

Feature D } Defined in derived class
Feature A

Derived class Defined in base class
Feature B '} and also accessible from

derived class

N

Feature C

Figure 14.1: Base class and derived class relationship

Inheritance, a prime feature of OOPs can be stated as the process of creating new classes (called
derived classes), from the existing classes (called base classes). The derived class inherits all the

500 Mastering C++

capabilities of the base class and can add refinements and extensions of its own. The.base class remains
unchanged. The derivation of a new class from the existing class is represented in Figure 14.1. The
derived class inherits the features of the base class (A, B, and C) and adds its own features (D). The
arrow in the diagram symbolizes derived from. Its direction from the derived class towards the base
class, represents that the derived class accesses features of the base class and not vice versa.

A number of terms are used to describe classes that are related through inheritance. A base class is
often called the ancestor, parent, or superclass, and a derived class is called the descendent, child, or
subclass. A derived class may itself be a base class from which additional classes are derived. There is
no specific limit on the number of classes that may be derived from one another, which forms a class
hierarchy. .

14.2 Class Revisited

C++, not only supports the access specifiers private and public, but also an important access
specifier, protected, which is significant in class inheritance. As far as the access limit is concerned,
within a class or from the objects of a class, protected access-limit is same as that of the private
specifier. However, the protected specifier has a prominent role to play in inheritance. A class can use
all the three visibility modes as illustrated below:

class ClassName
{

privaté:
// visible to member functions within
e // its class but not in derived class
protected: -
// visible to member functions within
e // its class and derived class
public: -~

// visible to member functions within
// its class, derived classes and through object
};:

Similar to the private members of a class, the protected members can be accessed only within the
class. That is, in the hierarchy of access, privilege code (members and friends) can see the whole
structure of an object whereas, the external code can see only the public features. Consider the follow-
ing definition of a class to illustrate the visibility limit of the various class members:

class X
{
private:
int a;
void £1()
{
// .. can refer to members a, b, ¢, and functions fl1, f2, and £f3
}
protected:
int b;

